A Prototype Representation to Approximate White Matter Bundles with Weighted Currents
نویسندگان
چکیده
Quantitative and qualitative analysis of white matter fibers resulting from tractography algorithms is made difficult by their huge number. To this end, we propose an approximation scheme which gives as result a more concise but at the same time exhaustive representation of a fiber bundle. It is based on a novel computational model for fibers, called weighted currents, characterised by a metric that considers both the pathway and the anatomical locations of the endpoints of the fibers. Similarity has therefore a twofold connotation: geometrical and related to the connectivity. The core idea is to use this metric for approximating a fiber bundle with a set of weighted prototypes, chosen among the fibers, which represent ensembles of similar fibers. The weights are related to the fibers represented b y t he prototypes. The algorithm is divided into two steps. First, the main modes of the fiber bundle are detected using a modularity based clustering algorithm. Second, a prototype fiber selection process is carried on in each cluster separately. This permits to explain the main patterns of the fiber bundle in a fast and accurate way.
منابع مشابه
Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents
This paper proposes a generic framework for the registration, the template estimation and the variability analysis of white matter fiber bundles extracted from diffusion images. This framework is based on the metric on currents for the comparison of fiber bundles. This metric measures anatomical differences between fiber bundles, seen as global homologous structures across subjects. It avoids t...
متن کاملA Statistical Model of White Matter Fiber Bundles Based on Currents
The purpose of this paper is to measure the variability of a population of white matter fiber bundles without imposing unrealistic geometrical priors. In this respect, modeling fiber bundles as currents seems particularly relevant, as it gives a metric between bundles which relies neither on point nor on fiber correspondences and which is robust to fiber interruption. First, this metric is incl...
متن کاملStructure Tensor Informed Fiber Tractography (STIFT) by combining gradient echo MRI and diffusion weighted imaging
Structural connectivity research in the human brain in vivo relies heavily on fiber tractography in diffusion-weighted MRI (DWI). The accurate mapping of white matter pathways would gain from images with a higher resolution than the typical ~2mm isotropic DWI voxel size. Recently, high field gradient echo MRI (GE) has attracted considerable attention for its detailed anatomical contrast even wi...
متن کاملStatistical models of sets of curves and surfaces based on currents
Computing, visualizing and interpreting statistics on shapes like curves or surfaces is a real challenge with many applications ranging from medical image analysis to computer graphics. Modeling such geometrical primitives with currents avoids to base the comparison between primitives either on a selection of geometrical measures (like length, area or curvature) or on the assumption of point-co...
متن کاملJoint Morphometry of Fiber Tracts and Gray Matter Structures Using Double Diffeomorphisms
This work proposes an atlas construction method to jointly analyse the relative position and shape of fiber tracts and gray matter structures. It is based on a double diffeomorphism which is a composition of two diffeomorphisms. The first diffeomorphism acts only on the white matter keeping fixed the gray matter of the atlas. The resulting white matter, together with the gray matter, are then d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 17 Pt 3 شماره
صفحات -
تاریخ انتشار 2014